
Segmented Iterators and
Hierarchical Algorithms

Matthew H. Austern

Silicon Graphics Computer Systems
austern@sgi.com

Abstract. Many data structures are naturally segmented. Generic al-
gorithms that ignore that feature, and that treat every data structure as
a uniform range of elements, are unnecessarily inefficient. A new kind of
iterator abstraction, in which segmentation is explicit, makes it possible
to write hierarchical algorithms that exploit segmentation.

Keywords: Standard Template Library, iterators, multidimen-
sional data structures

1 Introduction

A defining characteristic of generic programming is “Lifting of a concrete algo-
rithm to as general a level as possible without losing efficiency; i.e., the most
abstract form such that when specialized back to the concrete case the result is
just as efficient as the original algorithm.” The best known example of a generic
library is the C++ Standard Template Library, or STL [1–3], a collection of al-
gorithms and data structures dealing with one-dimensional ranges of elements.

For an important class of data structures, those which exhibit segmentation,
the STL does not make it possible to write algorithms that satisfy the goal of
abstraction without loss of efficiency. A generic algorithm written within the
framework of the STL can’t exploit segmentation. The difficulty is a limitation
of the STL’s central abstraction: iterators.

2 Iterators and Algorithms

The STL is mainly concerned with algorithms on one-dimensional ranges. As a
simple example of such an algorithm, consider the operation of assigning a value
to the elements of an array. In C, we can write this operation as follows:

void fill1(char* first, char* last, char value)
{
for (; first != last; ++first)
*first = value;

}

The argument first is a pointer to the beginning of the array: the element
that first points to, *first, is the first element of the array. The argument
last is a pointer just past the end of the array. That is, fill1 performs the
assignments *first = value, *(first + 1) = value, and so on up to but not
including last.

The arguments first and last form a range, [first, last), that contains the
elements from from first up to but not including last. The range [first, last)
contains last− first elements.

The function fill1 is similar to memset, from the standard C library; like
memset, it can only be used for assigning a value to an array of type char. In
C++ [4, 5] it is possible to write a more general function, fill:

template <class ForwardIterator, class T>
void fill(ForwardIterator first, ForwardIterator last,

T value)
{
for (; first != last; ++first)
*first = value;

}

This is an example of a generic algorithm written in the STL framework.
Like fill1, fill steps through the range [first, last) from beginning to end.
For each iteration it tests whether there are any remaining elements in the
range, and, if there are, it performs the assignment *first = value and then
increments first. The difference between fill1 and fill is how the arguments
first and last are declared: in fill1 they are pointers of type char*, but in
fill, a function template, they may be of any type ForwardIterator for which
the operations in fill are well-defined. The type ForwardIterator need not be
a pointer type; it need only conform to a pointer-like interface. It must support
the following operations:

– Copying and assignment : Objects of type ForwardIterator can be copied,
and one object of type ForwardIterator can be assigned to another.

– Dereference: An object of type ForwardIterator can be dereferenced. If i is
an object of type ForwardIterator, then the expression *i returns a refer-
ence to some C++ object. The type of that object is known as ForwardItera-
tor’s value type.

– Comparison for equality : Objects of type ForwardIterator can be compared
for equality. If i and j are values of type ForwardIterator, then the expres-
sions i == j and i != j are well-defined. Two dereferenceable iterators i
and j are equal if and only if *i and *j refer to the same object.

– Increment: Objects of type ForwardIterator can be incremented. If i is an
object of type ForwardIterator, then ++i modifies i so that it points to
the next element.

These requirements are known as the Forward Iterator requirements, or the
Forward Iterator concept, and a type that conforms to them is known as a Forward

Iterator. Pointers are Forward Iterators, for example, and it is also possible to de-
fine Forward Iterators that step through singly or doubly lists, segmented arrays,
and many other data structures. Since operators in C++ can be overloaded, a
user-defined iterator type can ensure that expressions like *i and ++i have the
appropriate behavior.

The Forward Iterator requirements are part of the STL, and so are algorithms,
like fill, that operate on Forward Iterators. The STL also defines several other
iterator concepts. A Bidirectional Iterator type, for example, is a type that con-
forms to all of the Forward Iterator and that provides additional functionality:
a Bidirectional Iterator i can be decremented, using the expression --i, as well
as incremented. Similarly, a Random Access Iterator type conforms to all of the
Bidirectional Iterator requirements and also provides more general arithmetic op-
erations. Random Access Iterators provide such operations as i += n, i[n], and
i - j.

Pointers are Random Access Iterators, which means that they are Bidirectional
Iterators and Forward Iterators as well.

Dispatching algorithms and iterator traits The reason for the different iterator
concepts is that they support different kinds of algorithms. Forward Iterators
are sufficient for an algorithm like fill, which steps through a range from one
element to the next, but they are not sufficient for an algorithm like Shell sort,
which requires arbitrary-sized steps. If Shell sort were implemented as a generic
STL algorithm, it would have to use Random Access Iterators. An algorithm
written to use Forward Iterators can be called with arguments that are Random
Access Iterators (every Random Access Iterator is also a Forward Iterator), but not
the other way around.

It’s obvious what kind of iterator an algorithm like Shell sort ought to use,
but sometimes the choice is less obvious. Consider, for example, the problem
of reversing the elements in a range. It is possible to write a reverse algorithm
that uses Forward Iterators, or one that uses Bidirectional Iterators. The version
that uses Forward Iterators is more general, but the version that uses Bidirectional
Iterators is faster when it can be called at all.

Both generality and efficiency are important, so the STL introduces the no-
tion of dispatching algorithms: algorithms that select one of several methods
depending on the kind of iterator that they are invoked with. The dispatch
mechanism uses a traits class and a set of iterator tag classes, and it incurs no
runtime performance penalty.

The iterator tags are a set of five empty classes, each of which is a place-
holder corresponding to an iterator concept.1 The traits class is a template,
iterator_traits, whose nested types supply information about an iterator.

For any iterator type Iter, iterator traits<Iter>::value type is Iter’s
value type and iterator traits<Iter>::iterator category is the iterator

1 The five iterator concepts are Input Iterator, Output Iterator, Forward Iterator, Bidirec-
tional Iterator, and Random Access Iterator. This paper does not discuss Input Iterator
and Output Iterator

tag type corresponding to the most specific concept that Iter conforms to.
For example, iterator_traits<char*>::value_type is char and iterator
traits<char*>::iterator category is the category tag for Random Access
Iterators, random_access_iterator_tag. The traits mechanism is quite general,
and has many different uses.

Given this machinery, writing a dispatching algorithm is simple. The algo-
rithm, using iterator_traits, calls an overloaded helper function with the iter-
ator’s category tag as an argument. The compiler selects the appropriate helper
function via ordinary overload resolution. For example, here is the skeleton of
reverse:

template <class ForwardIter>
void reverse(ForwardIter first, ForwardIter last,

forward_iterator_tag) {
...

}

template <class BidirectionalIter>
void reverse(BidirectionalIter first, BidirectionalIter last,

bidirectional_iterator_tag) {
...

}

template <class RandomAccessIter>
void reverse(RandomAccessIter first, RandomAccessIter last,

random_access_iterator_tag) {
...

}

template <class Iter>
inline void reverse(Iter first, Iter last) {
typedef typename iterator_traits<Iter>::iterator_category

category;
reverse(first, last, category());

}

3 Segmented Data Structures

The STL defines five different iterator concepts, but all of them have one thing
in common: each of them represents a position in a uniform one-dimensional
range. Given a Forward Iterator i, for example, the next iterator in the range (if
there is a next) is always ++i. As far as an algorithm that uses Forward Iterators
is concerned, every increment operation is the same. Similarly, given a range
[first, last) of Random Access Iterators, every iterator in the range is equal to
first + n for some integer n. Again, the range is uniform and one-dimensional;
every position within it is characterized by a single measure of distance.

Many data structures can be viewed as linear ranges (any finite collection can
be arranged in some order), but there are data structures for which a different
view is also appropriate. Often, the most natural index for an element isn’t a
single offset but a more complicated multidimensional description. One example
is a segmented array, or a vector of vectors.

template <class T> struct seg_array
{
typedef T value_type;
typedef vector<T> node;
vector<node*> nodes
...

};

Here is a simple pictorial representation:

x
H

HHHHj

XXXXXz

-
�����:�

����*

Elements in the segmented array are contained in nodes, each of which is a
vector; each element may be characterized by a node and an index within the
node. The outer vector consists of pointers to nodes, and, to make it easier to
detect the end of the array, the last entry in the outer vector is a null pointer.
(Represented in the picture by an “x.”)

This isn’t an artificial example: segmented data structures are common.
Within the STL, for example, the deque container is typically implemented
as a segmented array, and hash tables [6] are typically implemented as arrays
of buckets. Other examples of segmentation include two-dimensional matrices,
graphs, files in record-based file systems, and, on modern NUMA (non-uniform
memory architecture) multiprocessor machines, even ordinary memory.

The most natural way of assigning a value to all of the elements in a seg
array is a nested loop: loop through all of the nodes, and, for each node, assign
a value to all of the node’s elements.

vector<vector<T>*>::iterator i;
for (i = nodes.begin(); i != nodes.end(); ++i) {
vector<T>::iterator j;
for (j = (**i).begin(); j != (**i).end(); ++j)
*j = value;

}

Instead of writing a new function to assign a value to every element in a
seg_array, it is preferable to reuse the existing generic algorithm fill. It is
merely necessary to define a Forward Iterator that steps through a seg_array,
which, in turn, means defining a sense in which the elements of a seg_array can
be viewed as a simple linear range. There is a straightforward linearization: an
element’s successor is the next element in the same node, or, if no such element
exists, the first element in the next node. This definition can be used to write
an iterator for seg_array, seg_array_iter:

template <class T> struct seg_array_iter
{
vector<T>::iterator cur;
vector<vector<T>*>::iterator node;

T& operator*() const { return *cur; }

seg_array_iter& operator++() {
if (++cur == (**node).end()) {
++node;
cur = *node ? (**node).begin() : 0;

}
}
...

};

Using a seg_array_iter with fill is simple, but it changes the algorithm.
Every time a seg_array_iter is incremented, it checks to see if it has arrived at
the end of a node. Instead of a nested loop, the combination of seg_array_iter
and fill is more like this:

vector<vector<T>*>::iterator node = nodes.begin();
vector<T>::iterator cur = (**node).begin();
while (node != nodes.end()) {
*cur = value;
++cur;
if (cur == (**node).end()) {
++node;
if (node != nodes.end())
cur = (**node).begin();

}
}

As expected, the loop overhead is higher. On a 150 MHz MIPSTM R5000, for
example, it is 20% slower than the straightforward nested loop.

In this instance, the STL fails to achieve the goal of generic programming: the
STL’s generic algorithm fill is not as efficient as the original algorithm written
for seg_array. The original algorithm uses a simple and easily optimized nested

loop, while the generic algorithm expands into a complicated loop with multiple
tests in every iteration.

The difficulty, fundamentally, is that, while the seg_array_iter class man-
ages segmentation (it keeps track of a node and a position within the node), it
does not expose the segmentation as part of its interface; segmentation is not
part of the Forward Iterator requirements. The solution is a new iterator concept,
one that explicitly supports segmentation.

4 Segmented Iterators2

The discussion of fill in Section 3 is not completely general, because it only ad-
dresses the special case of assigning a new value to every element of a segmented
array. It does not consider the traversal of incomplete segments.

More generally fill operates on a range [first, last), where first is not
necessarily at the beginning of a segment and last is not necessarily at the end
of one. The general case is illustrated in the following diagram:

�
��/

first
�

��/

last

An algorithm that operates on a range [first, last) in a segmented data
structure can be implemented using nested loops. The outer loop is from first’s
segment up to and including last’s segment. There are three kinds of inner loops:
a loop through the first segment (from first to the end of the segment), a loop
through the last segment (from the beginning of the segment up to but not
including last, and loops through every segment other than the first and the
last (from the beginning of the segment to the end). One final special case is
when first and last point into the same segment.

In pseudocode, a segmented version of fill might be written as follows:

hierarchical_fill(first, last, value)
{
sfirst = Segment(first);
slast = Segment(last);

if (Segment(first) == Segment(last))
fill(Local(first), Local(last), value);

else {
fill(Local(first), End(sfirst), value);
++sfirst;

2 Other names that have been used for the same concept include “NUMA iterator,”
“bucket iterator,” and “cluster iterator.”

while (sfirst != slast) {
fill(Begin(sfirst), End(sfirst), value);
++sfirst;

}
fill(Begin(slast), Local(last), value);

}
}

A segmented iterator can be viewed as an ordinary Forward Iterator; *first
is an element in a data structure, and first can be incremented some finite
number of times to obtain last. Additionally, though, a segmented iterator can
be decomposed into two pieces: a segment iterator that points to a particular
segment, and a local iterator that points to a location within that segment.
Furthermore, it must be possible to inspect a segment iterator and obtain local
iterators that point to the beginning and the end of the segment.3

A segmented iterator and its associated local iterator are both iterators, both
have the same value type, and both can be used to traverse a segment within
a segmented container. The difference is that the full segmented iterator can
traverse a range that includes more than one segment, while a local iterator is
valid only within a single segment. Incrementing a local iterator can thus be a
very fast operation; it need not incur the overhead of checking for the end of a
segment.

As an example, the seg_array_iter class from Section 3 is a segmented
iterator. Its associated segment iterator type points to a vector<T> (increment-
ing a segment iterator moves from one vector to the next), and its associated
local iterator type is an iterator that traverses a single vector; that is, it is
vector<T>::iterator.

The distinction between segmented and nonsegmented iterators is orthogonal
to the distinction between Forward Iterators, Bidirectional Iterators, and Random
Access Iterators. The seg_array_iter class could easily be implemented as a
Random Access Iterator; each segment has the same number of elements, so the
operation i += n requires nothing more than integer arithmetic. A hash table
where the buckets are implemented as linked lists could also provide segmented
iterators, but, in contrast to seg_array, they could be at most Bidirectional
Iterators. A segmented iterator type can be no stronger than the weaker of its
associated segment iterator and local iterator types.

A segmented iterator has the same associated types as any other iterator (a
value type, for example), and, additionally, it has an associated segment iterator
type and local iterator type. Writing a generic algorithm that uses segmented
iterators requires the ability to name those types. Additionally, a fully generic
algorithm ought to be usable with both segmented and nonsegmented iterators.
This is the same problem as with the generic algorithm reverse, in Section 2,
3 STL iterators can be past-the-end. An iterator like last doesn’t necessarily point to

anything; it might, for example, point beyond the end of an array. Note that it must
be possible to obtain a valid segment iterator even from a past-the-end segmented
iterator.

and the solution is also the same: a traits class, which makes it possible to write
fill as a dispatching algorithm.

The segmented_iterator_traits class identifies whether or not an iterator
is segmented, and, for segmented iterators, it defines the segment and local itera-
tor types. Finally, it is convenient for the traits class to contain the functions for
decomposing a segmented iterator into its segment iterator and local iterator.4

The general definition of segmented_iterator_traits contains nothing but
a flag identifying the iterator as nonsegmented:

template <class Iterator>
struct segmented_iterator_traits {
typedef false_type is_segmented_iterator;

};

The traits class is then specialized for every segmented iterator type. For seg
array iterator, for example, the specialization is as follows:

template <class T>
struct segmented_iterator_traits<seg_array_iter<T> >
{
typedef true_type is_segmented_iterator;
typedef seg_array_iter<T> iterator;
typedef vector<vector<T>*>::iterator segment_iterator;
typedef vector<T>::iterator local_iterator;

static segment_iterator segment(iterator);
static local_iterator local(iterator);

static iterator compose(segment_iterator, local_iterator);

static local_iterator begin(segment_iterator);
static local_iterator end(segment_iterator);

};

Every such specialization for a segmented iterator type has the same interface:
the types segment_iterator and local_iterator, and the functions segment,
local, compose, begin, and end. This interface can be used by generic algo-
rithms such as fill. Here is a full implementation:

template <class SegIter, class T>
void fill(SegIter first, SegIter last, const T& x, true_type)
{
typedef segmented_iterator_traits<SegIter> traits;

4 Putting these functions into the traits class is slightly more convenient than putting
them into the iterator class, because it makes it easier to reuse existing components
as segmented iterators.

typename traits::segment_iterator sfirst
= traits::segment(first);

typename traits::segment_iterator slast
= traits::segment(last);

if (sfirst == slast)
fill(traits::local(first), traits::local(last), x);

else {
fill(traits::local(first), traits::end(sfirst), x);
for (++sfirst ; sfirst != slast ; ++sfirst)
fill(traits::begin(sfirst), traits::end(sfirst), x);

fill(traits::begin(sfirst), traits::local(last), x);
}

}

template <class ForwardIter, class T>
void fill(ForwardIter first, ForwardIter last, const T& x,

false_type)
{
for (; first != last; ++first)
*first = x;

}

template <class Iter, class T>
inline void fill(Iter first, Iter last, const T& x)
{
typedef segmented_iterator_traits<Iter> Traits;
fill(first, last, x,

typename Traits::is_segmented_iterator());
}

The main function, fill, uses the traits mechanism to select either a seg-
mented or a nonsegmented version. The segmented version, written using nested
loops, uses the traits mechanism to decompose a segmented iterator into its seg-
ment and local iterators. The inner loop is written as in invocation of fill on
a single segment.

Multiple levels of segmentation can be used with no extra effort. Nothing in
this discussion, or this implementation of fill, assumes that the local iterator
is nonsegmented.

5 Conclusions

The most important innovation of the STL is the iterator abstraction, which
represents a position in a one-dimensional range. Iterators are provided by con-
tainers and used by generic algorithms, and they make it possible to decouple
algorithms from the data structures that they operate on.

Ordinary STL iterators describe a uniform range with no additional substruc-
ture. Even if a data structure has additional features, such as segmentation, it
is impossible to access those features through the iterator interface.

Segmented iterators, an extension of ordinary STL iterators, make it possible
for generic algorithms to treat a segmented data structure as something other
than a uniform range of elements. This allows existing algorithms to operate
more efficiently on segmented data structures, and provides a natural decompo-
sition for parallel computation. Segmented iterators enable new kinds of generic
algorithms that explicitly depend on segmentation.

Acknowledgments

This work is a collaborative effort by many members of the Silicon Graphics
compiler group. I also wish to thank Ullrich Köthe and Dietmar Kühl for helpful
suggestions.

References

1. A. A. Stepanov and M. Lee, “The Standard Template Library.” Hewlett-Packard
technical report HPL-95-11(R.1), 1995.

2. D. R. Musser and A. Saini, STL Tutorial and Reference Guide: C++ Programming
with the Standard Template Library. Addison-Wesley, 1996.

3. M. H. Austern, Generic Programming and the STL: Using and Extending the C++
Standard Template Library. Addison-Wesley, 1998.

4. B. Stroustrup, The C++ Programming Language, Third Edition. Addison-Wesley,
1997.

5. International Organization for Standardization (ISO), 1 rue de Varembé, Case
postale 56, CH-1211 Genève 20, Switzerland, ISO/IEC Final Draft International
Standard 14882: Programming Language C++, 1998.

6. J. Barreiro, R. Fraley, and D. R. Musser, “Hash tables for the Standard Tem-
plate Library.” Technical Report X3J16/94-0218 and WG21/N0605, International
Organization for Standardization, February 1995.

