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The most striking attribute of the C++ Standard Library is that so much of it is a generic
library.  Most obviously, every nontrivial library component is a template. Even more
unusually, parts of the library clauses in the C++ standard describe things that aren't really
C++ code: the character traits requirements in chapter 21, for example, and the input iterator
requirements in chapter 24.  These tables seem slightly intangible.  They describe a pure
interface; they don't describe any particular class, nor do they mandate any sort of inheritance
relationship.

These requirement tables are the most visible manifestation of generic programming, a
technique for modularization, interoperability, and reuse of algorithms and data structures. 
Not all parts of the C++ library use this methodology equally.  The most fully generic part of
the C++ library is the part dealing with containers, iterators, and algorithms that operate on
linear sequences—the Standard Template Library.  Just from looking at the C++ library, you
might get the impression that generic programming only applies to that one narrow problem
area.  That impression is wrong.  The STL was the first important example of generic
programming, but the underlying ideas are general.

The Russian Peasant Algorithm

As is so often the case, the idea begins with algorithms.  Generic programming has been
defined as “Lifting of a concrete algorithm to as general a level as possible without losing
efficiency; i.e., the most abstract form such that when specialized back to the concrete case
the result is just as efficient as the original algorithm.”  

To arrive at the abstract we can begin with the concrete.  Consider the problem of raising a
number to a power.  The fundamental definition of exponentiation, for positive integral
exponents, is 
    x  = x × Ü × x (n times).n

We could turn that definition directly into code, but that would be wasteful: an algorithm
based directly on that definition would use nine multiplications to compute x .  Instead, since10

    x  = ((x ) )  × x ,10 2 2 2 2

we can multiply x by itself to obtain x , multiply x  by itself to obtain x  and then x  by itself2 2 4 4

to obtain x , and finally multiply x  by x  to obtain the result.8 8 2

This simple observation is the basis of the “Russian peasant algorithm,” one of the earliest
algorithms to have been discovered.  (Donald Knuth, in The Art of Computer Programming,
reports that a variation of the algorithm is known to have been used four thousand years ago.)
In pseucocode, using the notation KuL to represent the greatest integer less than or equal to u,
the algorithm is: 

    Require: n ≥ 1
    Ensure: P = xn

    while n is even do
      x ← x × x



      n ← Kn/2L
    end while
    P ← x
    n ← Kn/2L
    while n > 0 do
      x ← x × x
      if n is odd then
        P ← P × x
      end if
      n ← Kn/2L
    end while

In C, this becomes the function exponentiate1.  As promised, exponentiate1
computes x  in two multiplications, and x   in four multiplications. 4 10

  double exponentiate1(double x, int n) 
  {
    double P;

    while ((n & 1) == 0) {
      x = x * x;
      n >>= 1;
    }
    P = x;
    n >>= 1;
    while (n > 0) {
      x = x * x;
      if ((n & 1) != 0)
        P = P * x;
      n >>= 1;
    }

    return P;
  }

A generic algorithm

Is exponentiate1 really an implementation of the Russian peasant algorithm? There's an
important differences between C and pseudocode: C is a programming language where every
variable must be declared to have some specific data type, but in the pseudocode we began
calculating with x and n before ever saying just what they were.

The implementation and the pseudocode are both flawed.  The implementation is flawed,
because it is too specific.  It can compute x  if x is a double, but not if x is an int or an

long or a float.  A function that is so limited is not suitable for reuse, or for incorporation
into a library.

The flaw in the pseudocode is that we never said what x and n were.  The algorithm doesn’t
require that x is an double-precision floating point number, but it does have to make some



kind of assumptions about x and we never said what those assumptions were.  (Does the
algorithm make any  sense if x isn’t a number? Can you exponentiate a machine address, or a
string, or a file descriptor?)

The assumptions about x and n are implicit in the operations that the Russian peasant
algorithm performs, just as it is implicit in those operations that the exponent must satisfy the
precondition n ≥ 1. But, while that precondition is stated explicitly in the very first line of the
algorithm, the assumptions about x are not.  One further step is necessary before the
algorithm has been fully described (a step that is usually omitted in books about algorithms):
it must be analyzed so that the assumptions about x and n can be made precise.

The requirements on n are obvious: n must belong to some numeric type, and must support
the ordinary numeric operations. We perform the following operations on n:

" Assignment. We can assign a new value to n, and pass n as an input variable.
" Comparison.  We can test whether n is greater or less than another value..
" Integer division.  We can halve n, discarding the fractional part.  Halving must satisfy

all of the ordinary rules of integer division—in particular, that Kn/2L is non-negative and
less than n. 

" Parity test.  We can test whether n is even or odd.

In other words, n is an integer.

The requirements on x are more interesting.  We perform the following operations:

" Assignment.  We can assign a new value to x. We can also pass x as an input
variable, create a new variable P initialized to x, and return x as a result.

" Multiplication.  We can form a product from two values, and the product can be
assigned back to a variable of the same type.

The first of these requirements, assignment (which appears here in four different forms), is
unremarkable: it seems to be ubiquitous.  The second, multiplication, deserves more attention. 
What sorts of things can be multiplied, and what exactly do we mean by multiplication?

A different way to ask this question is to ask why the Russian peasant algorithm works in the
first place.  The reason we can compute x  using two multiplications, instead of three, is that4

we can square x ; we don’t have to multiply by x again and again.  We need the property that2

  x × (x × (x × x)) = (x × x) × (x × x).
But this is just the associative law:
  a × (b × c) = (a × b) × c.
The Russian peasant algorithm works because multiplication is associative.

No further conditions are needed.  The Russian peasant algorithm never assumes that
multiplication is commutative: you can use it, for example, for square matrices, and matrix
multiplication is not commutative.  Neither does the Russian peasant algorithm require
multiplication to have an inverse operation. Obviously not: we can use it for integers, and an
integer doesn't have a multiplicative inverse. Finally, nothing in the Russian peasant algorithm
requires the existence of an identity element: the operation “x ←1” appears nowhere.



The Russian peasant algorithm can be used for any type that has an associative binary
operation; it doesn’t matter whether or not that associative binary operation is something we
would ordinarily call multiplication.  It is easy to see, for example, that while string
concatenation is not commutative ("abc" appended to "def" is not the same as "def"
appended to "abc"), it is associative.  The Russian peasant algorithm is a perfectly
reasonable way to construct a string from n copies of another string.

Mathematicians have a name for a set with an associative binary operation: it is called a
semigroup.  Finally, then, we have answered the question about x’s and n’s types: n must be
an integer, and x must be an element of a semigroup.

(Technically, this is just slightly too strong.  Multiplication of real numbers is associative, but
a double is not a real number. It is a floating-point number, and floating-point arithmetic on
computers does not quite obey the usual arithmetic axioms.  Floating-point multiplication is
only approximately associative; you can use the Russian peasant algorithm for floating-point
numbers if that approximation is good enough for your purposes.)

Generic algorithms in C?

The standard C library includes two different functions that are at least partly generic:
qsort, which sorts an array of values, and bsearch, which finds a value in an array that
has already been sorted. Can they serve as a model for a generic version of
exponentiate1?

The function qsort has the prototype 
  qsort(void* p, size_t N, size_t sz,
        int (*cmp)(const void*, const void*));. 

The first argument, p, is a pointer to an array of N elements.  The elements in the array may
be of any type, which is why p is declared to be of type void* rather than (say) of type
int*.  The last two arguments provide some information about the elements
contained in the array p: sz is the size of an element and cmp is a pointer to a function that
compares two elements. 

These specific details don’t apply to exponentiate1, but the general approach does: refer
to arguments through void pointers, and perform operations on them through user-supplied
callback functions.  In exponentiate2 we use this idea for a our second attempt at an
implementation of the Russian peasant algorithm.

  void exponentiate2(void* x, int n, void* result,
                     void (*multiply)(void* a, void* b, 
                                      void* product),
                     void (*assign)(void* from, void* to)) 
  {
    while ((n & 1) == 0) {
      multiply(x, x, x);
      n >>= 1;
    }



    assign(x, result);
    n >>= 1;

    while (n > 0) {
      multiply(x, x, x);
      if ((n & 1) != 0)
        multiply(result, x, result);
      n >>= 1;
    }
  }

What’s wrong with exponentiate2?  Well, for one thing it’s much harder to understand
than exponentiate1.  You probably had to stare at it for a while to figure out what the
arguments multiply and assign were.  It’s also much harder to use; instead of just
writing
  exponentiate1(x, 10),
you first have to define two helper functions
  void multiply_dbl(void* a, void* b, void* product) {
    *(double*) product = *(double*) a * *(double*) b;
  }

  void assign_dbl(void* from, void* to) {
    *(double*) to = *(double*) from;
  }
and then call exponentiate2 by writing
  exponentiate2(&x, 10, &result, multiply_dbl, assign_dbl);.

This interface is cumbersome and error-prone: it has several traps that are very easy to fall
into. (I fell into one of them the first time I tested exponentiate2).  Additionally, since it
decorates every multiplication with a function call, a cast, and an indirection,
exponentiate2 is dreadfully slow.

Generic algorithms in C++

There is no good solution in C: there is no way to implement the Russian peasant algorithm
in C that is as flexible as exponentiate2 and also as simple and efficient as
exponentiate1.

The Russian peasant algorithm is a way to exponentiate an element of any semigroup, and the
fact that x is a semigroup element is a crucial part of that algorithm.  Writing versions of the
Russian peasant algorithm again and again for different data types isn’t just wasteful; it also
hides an essential abstraction.  That aspect of the algorithm, too, cannot be expressed in C.

There is a solution in C++: templates.  We can implement the Russian peasant algorithm as
exponentiate3, a function template.

  template <class SemigroupElement, class Integer>
  SemigroupElement exponentiate3(SemigroupElement x, Integer n) 



  {
    while ((n & 1) == 0) {
      x = x * x;
      n >>= 1;
    }
    SemigroupElement P = x;
    n >>= 1;
    while (n > 0) {
      x = x * x;
      if ((n & 1) != 0)
        P = P * x;
      n >>= 1;
    }

    return P;
  }

Templates were not always part of C++; they were added in 1991 precisely to solve this sort
of problem.  C++ supports class templates (parameterized types) and function templates
(parameterized functions).  The function exponentiate3 is an example of the latter. You
can use exponentiate3 in exactly the same way as you use exponentiate1; you can,
for example, invoke it by writing
  exponentiate3(2.71828, 10).

The name SemigroupElement is a formal generic template parameter.  Within the
definition of exponentiate3 it is treated as the name of a type; we use it as the type of a
function argument, a temporary variable, and the return value.  Just as the variable x doesn’t
refer to one specific value but to whatever value was passed as an argument to
exponentiate3, so SemigroupElement refers to whatever type that argument has. The
three expressions of type SemigroupElement are all the same type, whatever that type
might be.

A function template like exponentiate3 isn't a function in the sense that
exponentiate1 is a function; it's a schema that describes an infinite family of functions
parameterized by the formal template parameters SemigroupElement and Integer. 
Each function in that family is called a specialization, or an instance of exponentiate3.  In the
expression
  exponentiate3(2.71828, 10)
we are invoking the instance of exponentiate3 for which SemigroupElement is
double and Integer is int.  The template argument double corresponds to the
template parameter SemigroupElement.

All of this works because of specific C++ language features:
" Templates.  We have written exponentiate3 as a parameterized family of

functions all of which represent the same algorithm, but that use different types.
" Overloading.  Whatever SemigroupElement is, we can use the * operator to

multiply two values of that type. The * operator means something different depending
on whether its operands are int, or double, or Complex. The same name refers to



different things.  In this case it's the name of an operator, but we could just as easily
have written exponentiate3 in terms of functions with names like square and
halve.  Writing generic algorithms requires the ability to overload functions; operator
overloading is merely a special case of that general facility.

" User-defined types.  Operator overloading is just one example of an important
principle: the ability to treat built-in types and user-defined types on an equal footing.
In exponentiate3 we declare a local variable P of type SemigroupElement. 
We didn’t have to do anything special; we didn’t have to allocate a new object from
the free store, for example, or call a special initialization function before using the
variable, or call a special cleanup function afterwards.  C++ allows true local variables
of user-defined types, and it performs automatic initialization and cleanup through
constructors and destructors, so using a variable of type SemigroupElement is just
like using a variable of type int.

Constraints on template parameters

It’s clear that exponentiate3 is more general than exponentiate1.  Two questions
about it remain, though.
" The Russian peasant algorithm describes a procedure for exponentiating an element of

any semigroup.  To what extent does exponentiate3 reflect that generality?
" What happens if you try to call exponentiate3 with a clearly inappropriate

type—that is, what happens if you try to instantiate it with a template argument that
couldn’t possibly be an element of a semigroup?  What happens, for example, if
exponentiate3’s first argument is a pointer?

Both of these questions straddle the boundary between an abstract algorithm (the Russian
peasant algorithm) and its implementation in a specific language (exponentiate3).  Not
surprisingly, they are related.

The second question is easier: if exponentiate3’s first argument is a pointer, you will get
an error message complaining about invalid arguments to operator*.  The implementation
of exponentiate3 uses operator* for multiplication, and there is no binary
operator* for pointers.  The expressions x * x and P * x are meaningless when x and
P are pointers.

This is a simple example, but it teaches us two important lessons. First, there are constraints
on the template parameters SemigroupElement and Integer: the function template
exponentiate3 can only be instantiated with template arguments for which all of the
expressions in exponentiate3 make sense.  Second, these constraints are purely syntactic. 
It's not sufficient for X to be in some sense a semigroup element; not only must X have an
associative binary operation, but that binary operation must be called operator*.

(Strictly speaking, the constraints are actually on the template arguments used to instantiate
exponentiate3: the issue is whether a specific type X can be substituted for the formal
template parameter SemigroupElement.  To insist on that distinction, though, would be
pedantry.  Writing the constraints in terms of the template parameters is clear and



unambiguous, and it lets us avoid inventing new names for the template arguments.)

The constraints on exponentiate3’s template arguments, then, aren’t quite the same as the
list of requirements in the Russian peasant algorithm itself.  That list was constructed from a
formal algorithmic description.  We need a different way to express the constraints that apply
to the actual implementation of exponentiate3, and those constraints must be based on
the ways in which the template parameters SemigroupElement and Integer are used in
expressions.

The template parameter Integer must be an integer type; no more analysis is necessary. 
The template parameter SemigroupElement must support the expressions that are used in
exponentiate3’s implementation.  That is, it must satisfy the following requirements:

" SemigroupElement has a copy constructor: it must be possible to copy values of
type SemigroupElement.  (This is necessary because exponentiate3’s
argument of type SemigroupElement is passed by value.)  If x is a value of type
SemigroupElement, then the expression

    SemigroupElement(x),
and the statement
    SemigroupElement x1(x);,
must be valid.

" The multiplication operation is defined for values of type SemigroupElement.  If
x1 and x2 are values of type SemigroupElement, then the expression
    x1 * x2
must be valid and its return value must be of type SemigroupElement.

" SemigroupElement has an assignment operator.  If x is a variable of type
SemigroupElement, and x1 is a value of type SemigroupElement, then the
expression
    x1 = x
must be valid.

These are requirements on expressions, rather than on specific functions.  We rely on the fact
that SemigroupElement supports multiplication, but we don't rely on an exact signature. 
Multiplication might have any of the signatures
  SemigroupElement SemigroupElement::operator*(SemigroupElement)
  SemigroupElement operator*(SemigroupElement, SemigroupElement)
  SemigroupElement operator*(const SemigroupElement&,
                             const SemigroupElement&)
or any of a number of other possibilities.  If SemigroupElement is a fundamental type like
int or double then multiplication is a built-in operation, not a function at all.  That's
unimportant.  So long as the expression
  x1 * x2
is valid, it doesn’t matter whether multiplication is a global function, a member function, or
something else.

These syntactic constraints are necessary conditions, but they aren't sufficient; they're enough



to ensure that the program compiles, but not enough to ensure that it computes the right
answer.  We can't expect exponentiate3 to work properly if “assignment” doesn’t assign
and “multiplication” doesn’t multiply. Each of the expressions on that list must have the
appropriate semantics:

" The copy created by SemigroupElement’s copy constructor is the same as the
original.  If x is a value of type SemigroupElement, then
SemigroupElement(x) is the same as x.  Similarly, assignment results in a copy
of the original.  If x and x1 are variables of type SemigroupElement, then, after
executing x1 = x, we may assume that x and x1 are equal. 

" Multiplication on SemigroupElement is associative.  If x, y, and z are values of
type SemigroupElement, then x * (y * z) is the same as (x * y) * z.

Summary

Let’s look back at what we’ve done.  First, we wrote a generic implementation of the Russian
peasant algorithm; this implementation operates on the arbitrary type SemigroupElement. 
Second, we analyzed that implementation to discover what requirements that type had to
satisfy in order for the algorithm to make sense.  Third, we codified those requirements as a
list of syntactic and semantic expressions involving SemigroupElement.  This is much
like the requirements tables in the C++ standard.

This list of constraints shows that we were actually programming in terms of a specific
interface: an interface consisting of the operations that SemigroupElement must support. 
Any concrete type will undoubtedly support many more operations than the ones in this
minimal list: you can do many more things with a double, for example, than just copy it or
multiply it.  As far as exponentiation is concerned, however, those extra operations are
irrelevant.

By listing these constraints we abstracted out a precise and limited set of properties.  Our
interface  describes the commonality between int, double, SquareMatrix,
Quaternion, and many other types—types that are completely unrelated by inheritance.

This is similar to what Bertrand Meyer calls “programming by contract”: exponentiate3
imposes a specific set of requirements, and it guarantees that it will perform a certain task if
and only if those requirements are satisfied.  The difference is that, in its traditional sense,
programming by contract deals with preconditions and postconditions of a function: it refers
to the function’s run-time behavior.  We have arrived a different sort of contract: one that
lists the conditions under which it is possible to combine different software components
together.


